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REFLECTION OF INTERNAL GRAVITY WAVES
BY A LAYERED DENSITY ANOMALY

INTRODUCTION

The characteristics of the propagation of internal gravity waves in the ocean, either
upward from the bottom or downward from the region of the surface, is of interest to
oceanographers because of the implications to the total energy budget of the internal
wave field. The ways by which these internal waves may be generated are numerous.
Internal lee waves, for example, can be generated by current flow over bottom topography
(1-3). The fate of these disturbances after they are generated depends upon the environ-
ment through which they travel. The absorption of the wave energy by critical layers has
recently been of interest in this context (4, 5), but the reflection of waves by urrent
shear or anomalies in the density urofile has receivd somewhat less attpntinn Perhaps
the simplest situation of physical interest in this regard is the propagation of a train of
plane waves upward through a fluid which has an exponential dependence of density upon
height. This plane wave will propagate without change in amplitude or direction (to the
Boussinesq approximation) unless it encounters a density or shear anomaly. Layered
regions like the thermocline change the propagation conditions, and part of the wave
energy can, in principle, be reflected back toward its region of generation. This reflec-
tion problem has been considered in special cases by Hines and Reddy (6) and Barcilon
et al. (7). In the former work, the density stratification is modeled with a series of strata,
each of which are at a constant temperature. Because the density structures modeled
are typical atmospheric soundings, the dependence of the reflection coefficient on the
physical parameters (scale heights and density differences) is not easily discerned. In the
latter paper, the properties of the medium are presumed to change slowly over a distance
much greater than a vertical wavelength. Superimposed on this "slow" variation is a
smaller, wave-scale variation. This fine structure can cause the reflection of a significant
portion of the incident wave energy.

In this report, we consider the interaction of a plane internal wave train with a dif-
fuse layer embedded in a density profile possessing an otherwise exponential dependence
on height. he density structure is assumed to be of the form

wz=po exp(Az+Etanhaz+e ncoshuz) < (1)

where z increases positively downward (see Fig. 1). The case of a thin layer is obtained
in the limit u - . The analysis is similar to, but is an expanded and corrected form
of, that of Epstein (8) for an analogous reflection problem in electromagnetic wave
propagation theory.

The derived results are of physical significance in the case of the ocean, as the ther-
mocline shapes discussed here bear at least a qualitative resemblance to those observed in
the ocean. For example, Iselin (9) shows a distribution of Brunt-Vaisala frequency which
is very much like Eq. (1) with e 0, el = 0 (see Fig. 2a). Just as significant, however,
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Fig. 1-An arbitrary Brunt-Viisai frequency
N(z) profile as a function of height z.

N2 (z)

SYMMETRIC TRANSITION
LAYER LAYER

Fig. 2-(a) the symmetric profile e 0 e = 0)
and (b) the transition profile (e = 0, ei * 0).
N 2 = N 2 (z}.
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may be the occurrence of steplike structures in the seasonal thermocline. Woods (10)

reports an instance of the actual formation of this type of stepped structure resulting

from the breaking of internal wavelets generated as a result of the instability to shear

between layers of relatively homogeneous fluid masses, each possessing a different density.

Phillips (11) and Orlanski and Bryan (12) argue that instabilities in the internal waves

present are chiefly responsible for this stepped thermocline structure. Thermoclines re-

sembling the form given by Eq. (1) and the sharp thermocline corresponding to u - - in

the same equation are therefore known to occur in the open ocean. It is of interest,

then, to examine the internal wave propagation through, and energy reflection by, density

distributions of this general form.

In the second section, we will present exact solutions for the transmitted and re-

flected waves obtained when a wave train is incident on a density anomaly possessing

the form given by Eq. (1). The third section gives the expression for the reflection

coefficient for a symmetrical layer (E * 0, El = 0) and for a transitional layer (e = 0,

el # 0) between two regions having different Brunt-Vaisala frequencies. In each case the

reflection coefficient has a deceptively simple appearance. It is actually a complicated

function of the physical parameters, and even a small density anomaly can cause a

significant reflection of waves traveling at a shallow angle to the horizontal.

The analysis involves an analytic continuation of the proper transmitted wave solu-

tion into the solutions which represent the incident and reflected waves. This analytic

continuation formula is a classical one that exists only because the equation governing

the dependence of the vertical velocity on the vertical coordinate can be transformed into

Gauss' hypergeometric equation. Corresponding formulae generally do not exist for

arbitrary density anomalies; but, the presentation of the work in this report allows one to

vary density differences, the scale height of the anomaly, the vertical wave number, and

the angle of incidence of the incoming wave in order to determine their individual effects

upon the reflection coefficient. Because of the scarcity of such general forms for the re-

flection coefficient, a numerical technique that can be used in lieu of an analytic con-

tinuation for arbitrary Brunt-Vaisala distributions is presented in an appendix. The

results of the numerical method are compared with the analytic results. The agreement is

very good, and it is concluded that the numerical technique can be used in treating inter-

nal wave reflection from stability frequency profiles of arbitrary configuration.

THE REFLECTION PROBLEM

General Discussion

The equation governing two-dimensional, small-amplitude motions of an inviscid,

density-stratified fluid about its equilibrium position is given (to the Boussinesq approxi-

mation) by Phillips (11) as

a2 a2 w a2 w \2 0-(- + - ) +N2(z) - _0, (2)
at2 k ax 2 az2 ax2

where w is the vertical velocity component and N2 (z) is the Brunt-Vaisala frequency

defined by
2(Z) = fg dp (3)

N P

IU



MIED AND DUGAN

The dimension z is taken to be increasing vertically downward, and the horizontal coordi-nate x is taken to be increasing positively to the ight The density of the fluid in itsquiescent state is kRz), and the effects of diffusion and rotation have been neglected. Ifit is assumed that an internal gravity wave of frequency o (less than the maximum over zof N(z)) and horizontal wave number passes through the fluid, the velocity may bereduced by the substitution

W(x t) = (z)e kX t) (4)

so that Eq. (2) reduces to

hi +N2 z) _ kg2 = . 05)

We are particularly interested in fluids having density profiles of the form shown inFig. 1. For simplicity, it is assumed that the Brunt-Viisila frequency is constant outsideof a layer, although the stability frequency in the region above the layer may in generalbe different from that below the layer The density has a well-defined maximum and/orminimum value. Further, these extrema may or may not be in the anomalous layer. Weremark that for the ensuing analysis to be valid, the Brunt-Vli frequency outside theanomalous region need not be constant. It must satisfy only the weaker condition thatit vary slowly enough over a vertical wavelength of the internal wave so that the WKB
approximation is valid.

We are interested in wavelike solutions of Eq. (5), but it is well known that theequation has no such nontrivial solution that is regular at infinity if > N . Thusinternal waves will propagate only if < Nnax Moreover, there are two dstinct typesof wave solutions for this allowable frequency range. If the wave frequency is lessthan N bu everywhere greater than the runt-Vaisala frequency outside a boundedregion surrounding the point where NY = A~axY Eq. (5) allows nontrivial solutions for
certain distinct combinations of the frequency and horizontal wave numbers; thesesolutions vanish far away from the anomalous region. In other words, this is a classicalwaveguide solution in which there is a discrete spectrum of trapped modes that propagatealong the density anomaly. The greater of the two numbers N and N constitutesa lower cutoff frequency for these modes, so only a finite number of modes with thesame wave number can propagate without attenuation.

The governing Eq. (5) also has a continuous spectrum of solutions in the frequencyrange < max T,1N_ N . A plane wave of arbitrary frequency and wave numbercan propagate in the upper or lower region provided the wave frequency is less than thelocal Brunt-Vaisala frequency.

The problem of interest here is to determine what effect the anomalous layer has ona plane internal wave that is propagating upward in, say, the lower layer. To be explicit,we assume that a wave of frequency with horizontal wave number is traveling upwardthrough the lower fluid at angle 0 to the horizontal. (The angle actually is fixed by therelation = cos 0 which is a result of Eq. (5) in the case of a plane wave at z = + c)The wave enters the anomalous layer, and its amplitude and phase are changed as itpropagates through the layer. As a result of the changing waveform, some of the waveenergy is reflected back down into the lower layer and the remainder, if any, is trans-mitted upward into the upper layer. The exception involving the IF is foreseen because

4
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DOWNGOING WAVE

UPGOING WAVE

HORIZONTAL VECTOR

PHASE
VELOCITY

Fig. 3-The relation of the phase and group
velocity vectors for internal waves in a stably
stratified fluid.

of the case in which the wave frequency is greater than the Brunt-Vaisala frequency in
the upper layer. This does not allow propagation there, and we will see that this causes
total reflection of the wave.

The direction of energy propagation is not the direction of phase propagation in
internal waves, so care must be exercised in specifying the direction of the phase velocity
of the incoming wave. Phillips (11) discusses this matter in detail, and the relation of the
group velocity to the phase velocity is shown in Fig. 3. The terminology used here is
that an upward or downward propagating wave is one for which the direction of energy
propagation (or group velocity) is upward or downward.

Solution of Governing Equation

The reflection problem with an arbitrary density profile and vertical wavelengths
comparable to the thermocline scale height is, in general, analytically intractable; so, a
particular distribution of stability frequency is chosen that exhibits the main features of
the reflection phenomenon. The Brunt-Vaisala frequency obtained from Eqs. (1) and (3)
is illustrated in Fig. 2 for the two cases e 0, e1 = 0 and e = 0, e1 o. As may be
seen, the former case has a stability frequency profile symmetric about depth z = 0. If
c > 0, the fluid in the anomalous layer is more stable than that of its surroundings; if
e < 0, however, the fluid in the layer is relatively homogeneous and consequently not as
stable. The value of e cannot be so negative that the stability frequency is negative in
toto anywhere, since such a situation would be statically unstable. In the second case
(e = 0,el * 0), the anomalous layer is really a transition region between two layers of
constant but different Brunt-Vaisala frequencies. If el > 0, the transition in the

5
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direction of primary waves (incident from below) is from more stable to less stable fluid.
The opposite is the case for el < 0; and again, we require that the magnitude of be
bounded so that the Brunt-Viisifa frequency is nonnegative everywhere.

The differential equation, Eq. (5), with the profile 1), is

OZ +k2 { a-2glA + ea sech2 a + 1 a tanh z - 14O (6)

This equation reduces to

OZZ +k2 {Wu2g(A +ela) _1} 0 (7)

in the limit of large positive z (the lower propagation zone), and to

tZZ +k2{f-2gA e) 1}40 (8)

in the limit of large negative z (the upper zone into which the transmitted wave propa-
gates). In these regions, the equations allow the solutions

4 exp{±iktc 2g(A +ela)- i11/2z} (9)

for z - + - and

- exp{/+ik 2g(A - eIC) - 11112z} (10)

for z - - '. In each case, the phase is defined by Eq. (9) & (10), and the solution hav-
ing the positive sign has a downgoing phase while the solution having the negative sign
has an upgoing phase. Upon referring to Fig. 3, we see that the vertical component of the
energy flux is in the opposite direction, so the phase possessing the positive sign repre-
sents upgoing energy and that corresponding to the negative sign represents downgoing
energy. A solution composed of a general linear combination of solutions of Eq. (6) will
not in general, solve the problem. This can best be seen by examining the mechanics of
the reflection process. In the lower region, the solution (9) with positive sign represents
the incoming wave with known amplitude and the solution (9) with negative sign is the
reflected wave with unknown amplitude. In the upper region, however, there can be only
the upgoing (transmitted) wave with unknown amplitude, so the solution (10) with
negative sign should not be present.

The problem then reduces to predicting the amplitudes of the reflected and trans-
mitted waves. This is a trivial task only if the anomalous region is reduced to zero thick-
ness so that it can be replaced by an interface. In Appendix A, this classical case is com-
pared with the solution obtained in the third section in the limit a -* -. However, the
particular Eq. (6) also is analytically tractable, and these wave amplitudes will be found in
the analysis below. This work is comprised of the analytic continuation of the upgoing
(negative sign) wave solution of expression (10) across the anomalous region into a linear
sum of the solution (9). This continuation has been used by Epstein (8) for an equivalent
problem in electromagnetic wave propagation. The analysis is redone here because the
physical parameters enter the equations in a different way and because the present paper
expands the problem to include a solution of the general case e * 0, c1E 0; furthermore,
the solutions differ somewhat from those of Epstein (8).

G
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Equation (6) may be rewritten in the form

4 + {h2 +(b) sech2( )+ctanh(Y)} o, (11)

where the change of variable

y = 2uz (12)

has been made and the parameters

h2 agh2 h2

4a 2 w 2 4u2

b gek 2 (13)
U2
gelk2

c 
4aw2

have been introduced. Another change of independent variable,

= ey , (14)

transforms Eq. (11 to

0o + 0 + { h2 + (1 + )-2 + c( - 1)(t + 1<)-1 } 0, (15)

and the change of dependent variable

= (1 + )dtaf, (16)

where a and d are constants chosen below, yields the equation

t(1 * +)ftt + [2a + 1 + (2a + 2d + 1)flft + f2a + d

+ [(a2 + h2)(1 + )2 + d(d - 1)42 + t C(t - 1)(t + if4]

X C-1( + 1- }f = 0. (17)

This equation may be reduced further if the constants a and b are chosen so that

a = (c - 21/2

d= - 2 (1 + 4b)1/2. (18)

With the final change of variable t = - t, Eq. (17) reduces to Gauss' hypergeometric
equation (13),

t(1- )f1T + [(2a + 1)- (2a + 2d + )¢Jf - [(2a +d)d + 2c] = 0. (1 9)
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In the region of the incident and reflected waves as z - > (t - 4 the solutions of Eq.
(19) are (14),

01 -e V(1+ t)d-ep(y a + l-y; a + 1 3; ( tY4 )

02 - ta( + )dt3F{JJ, 3 + 1 -; i + 1 a; ( t)--1) (20a)

where F( ) represents the hypergeometric series and

a = a + d + a2 - 2c)112

-a + d - (a2 - 2)1/2

y= 2a + 1. (21)

The solutions in the far transmission region, as Z - _ o (t - 0), are

0 t" (I + tdfl7,a, - t)

'04 tl tdf_ t)'-'Y( + - + { 2 -f-t*(20b)
There are actually several ways in which the independent solutions (20a) and (20b) can

be chosen; the forms above are selected for convenience in the following calculations.

With the aid of expressions (18) and (21), limiting forms of these solutions reduce to

01 - exp [- 21(h2 + c)1/2zJ

2 -exp 1+ 2i(h2 + c)112az (22a)

as t - or z a , d

0s - exp t 2i(h 2 _ c)12uz

4- exp [- 2i(h2 _ c)112oz] (22b)

as z in their respective regions of validity. As was discussed previously with

respect to the solutions (9) and (10) 01 and 04 are downgoing waves (toward z = + 00)

and 02 and 04 are upgoing waves (toward z = - -) when viewed in terms of their group

velocities. Thus, the limiting form of 3 as z - - oo is a plane wave that transports energy

from the anomalous region.

We therefore consider 45 as the wave transmitted through the anomalous layer;

concommitantly, 04 is excluded from this role because its energy propagation direction is

toward the anomalous layer. We remark that these asymptotic forms represent wavelike
solutions only if liH < h2 or ea1ui <c g _ tW2 . This restriction in terms of wave propaga-

tion from the lower into the upper region is discussed on p. 18.

Since 4,a represents the transmitted wave, this solution can be traced back through

the layer. In the limit as z - , we will be able to represent 4, as a linear combination

of 1 and 02 When the magnitude and phase of these complex coefficients are known,

the total percentage of reflected and transmitted energy can be found. The process of

g
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determining the representation of 3 in terms of 01 and 2 in their region of validity is
called the analytic continuation of 3 into the region of validity of 01 and 02 A
classical analytic continuation formula, valid for hypergeometric functions, is given by
Erdelyi (14) as

F(oa, 0; My; t) = F( 0 - a) -F(a l-y + a; 1-_ + a; (_ tf 1)

+ r(a(- - ) F 1 + ;1 - a + J; (- h), (23)

where r( ) represents the gamma function. Referring to expressions (20a) and (20b), we
may employ this formula to express 0. as a linear combination of 01 and 02.

REFLECTION COEFFICIENT

The reflection coefficient, denoted by R, is defined as the coefficient of the re-
flected wave divided by the coefficient of the incident wave. The ratio of these ampli-
tudes, however, is just the ratio of the coefficients in Eq. (23), so that

E r( )ra)r( -) (24)
r (a - prl) r (y - a) (2)

As was noted in the second section, the amplitudes and phases of the transmitted and re-
flected waves differ from those of the incident wave. Since this amplitude and phase
information is contained in each of the coefficients of Eq. (23), it is apparent that their
ratio-the reflection coefficient-is a complex number. The amount of energy in an inter-
nal wave is proportional to the square of the wave amplitude, so the percentage of energy
that is reflected is given by 100IR 12 where 12 = R*. The total energy is conserved
(to the Boussinesq approximation) under the assumptions in Eq. (2), so the percentage of
energy transmitted is given by 100(1 - lR12).

Equation (24) contains the physical parameters associated with the thermocline scale
height, density differences, and the horizontal wave number and direction of travel of the
incident wave at z + . These are seen to enter in a rather complicated manner through
the definitions of (13), (18), and (21), although Eq. (24) can be simplified to include only
elementary functions of the physical parameters by limiting the discussion to R12. The
essential details of the reflection phenomenon can be obtained by plotting several special
cases. In the next section, the solution for the general case of e, e1 0 is given for a
special restriction on the values e and e1. The separate cases of the symmetrical layer
(e * 0, el = 0) and the transition layer (e = 0, e l 0) are then treated in more detail.

General Case

For the general anomalous layer, e, el 0 with b = gek 2 /aQ 2 > 1/4, and the
square of the magnitude of the reflection coefficient (24) is

9
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2 a) 2 1r-(P - ad1 2 p 1 

rT() 1(a -P) rTY - a)(

This expression is, in general, quite a complicated function of the physical parameters.

We may, however, simplify Eq. (25) by considering the case for which eil <z h2 The

quantity a - = 2- h 2 - C)112 is then purely imaginary, so

Fr - a 2 2 _ C 1/2) 2 F(zf) 2
Pap~ -0 r(2-2th2 -C] 12) rF(Z*)

Then, with the definitions of (21), Eq. (25) reduces to

1Fla +d + (a2 c)12i 2 1 1 + - d + (a2 2c)1 12 ]12

la + d -(a 2 - 2c)/2) Vt +a- d (a2 -2c) 1 121

The identity

r~l Z) rtz) '(z) SinrIz

permits further simplification of the above to

1R;2 Uta+d+(a 2 -2c)/21 2 rtda+2(a2c /21 2

F -a + d - (a2 - 2c)1l2 : rId + a (a2 - 2c)1/2I\

X sin 7 [d - a + (a2 _ 2c) (26|

sin rr [d - a - (a2 2c)1 12 3

Now, the quantity (a2 _ 2-)yl2 is imaginary for ici < h2, and d is real as long as b > - 1/4

(the significance of this inequality is discussed below). If the discussion is restricted to

this case, the first two terms in Eq. (26) are seen to be unity from the definition of the

gamma function,

F(Z) = e-tz--ldt

Finally, the last term can be expanded so that

jRl2 = sin2 d cosh2 r(b' -a') + cos2 ird sinh2 ifrb' - a')

sin2 vrd cosh 2 ?r(b' + ') + cos2 ird sinh 2 ir(b + a')

10
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where

GCJ4 4

a = (h2 C)112 [g 2 k2 gek ]h /
14a}2c 2 42 7Ta2

b = (h2 + c)l/2 [ Agk2 k2 ge k2 1/2
4a 2 W2 4a2 uw2 2

d 2 (1+4b) 1 2 = 2 - 2 [1+ gck2 ]1/22 2 ~2 2 [ W2
cli <ht

Equation (27) is the square of the reflection coefficient for a general combination ofsymmetrical and transitional layers of the form of Eq. (1) subject to the restrictions
b > - 1/4 and c < h2. The physical implications of these inequalities are discussed inthe following sections. The reflection coefficient is a function of three parameters, sofurther analysis will be limited to simpler cases.

Symmetrical Layer

In the case of the symmetrical layer, t 0, el = 0, c = ge 2 /4ao2 = 0, andb = a = h; so, as long as b - 1/4, the reflection coefficient may be obtained fromEq. (27). It reduces to

IR12 = sin 2
,r

sin2 7rd cosh 2 27rh + cos2 vrd sinh 2 2nh 7 (28:

The case of < - 1/4 for the symmetrical layer must be treated separately. In this case,

d= I- ( 1 4b)1/2 =1 + id, say,2 2 + 21
and

a' h

so Eq. (24) reduces to

F, + i(2h + di] [7- 2h)F + i(2h - d

(2 +id2) r2ih)r' --id2)
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Use of the identity (Ref. 14)

r( 2tI 2) ( d 2 ) coshrd 2

Lflows a reduction of the above to

r(- 2h) coshd 2 d +i*2h -d)
R -F(2h) _ L2 + 2 2 2

YWe may now compute RR* with the use of the identity

r 1 rl (1*- 

The expression for RR* is then seen to reduce to

cosh2 ird2

sinw 7 + i(2h +d jsinr jv + N2h +d2)j

Or,

cosh
2 7rd2

la2= _- h -. (29)
cosh ir f2h + d2 1 cosh 7r [2h - d21 4

This formula, along with Eq. (28), completes the range of validity of the reflection

coefficient for the symmetric layer (e t 0, el = 0).

The two eases b >- 1/4 must be treated separately merely for mathematical reasons.

There is no apparent physical significance in the value of b being larger or smaller than

-1/4. There are, however, other physical limitations on the value of b. In order that the

Brunt-Vaisala frequency be nonnegative, b must satisfy the inequality

b + Agh
4u2 w2

or, in the origial variables,

eaŽ>-a

If e were a larger negative than this, the basic state would be statically unstable in the

neighborhood of z = 0 (see Fig. 2). Another range of the variable b that is of interest is

seen to be when b is a sufficiently large negative number so that

b +h 2 CO.
4

2

i

i
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In the original variables, this implies that

gea < (Ag- C2 ).

In this case, the upward-propagating wave encounters an evanescent layer in the neighbor-
hood of z = 0. That is, the propagation constant (or restoring force) in Eq. (6) is nega-
tive and solutions of the equation are locally monotonic instead of oscillatory. If this
occurs over a sufficiently large vertical region, one would expect that most of the wave
energy would be reflected.

I 2

1

2 ___

d

Fig. 4a-The logarithm of the square of reflection coefficient
(log RI 2) for a symmetric layer. Log R1 2 is plotted as a fune
tion of d and h.

JRI2

05

10

________~i __ _ __ _ __ _5 h

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ~2 . 0
__ _ _ _ _ = _ __ ._ 25 v

2o -- ----=o '_,-- -f Fa30
d2

Fig. 4b-Log R12 as a function of d2 and h.

Equations (28) and (29) contain only two parameters, so that their significance is
relatively easy to appreciate. Figure 4 shows plots of the reflection coefficients as func-
tions of the two parameters d and h. These graphs can therefore be used to obtain the
reflection coefficient for any particular combination of the physical variables in the case
of the symmetric layer. It is also instructive to illustrate the functional dependence of
IRI2 upon the individual parameters in definitions (13). Specifically, these are ha-, the
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ratio of the horizontal wave number to the scale length of the layer, and 0, the angle of
the incident wave with respect to the horizontaL Figure 5 shows several plots graphed on

Symbols for k 1- for ba., Sb., Se.

0 = 0.005
+ = 0.01
o = 0.05
o = Qi

IL

X = 0.25
A 0.50
rn= 1.0
V = 5.0

O 10 20 30 40 50 60 70 60 90
Go = ANGLE OF INCIDENCE tOEGREES)

N 2

Fig. 5a-Log RI2 as a function of e and k-1; max_ 1 .= O1

N2 min
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Fig. 5c-Logf RI2 asa function of and k 1; Max -I= 10.0
N21
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a logarithmic scale to enhance the appearance of windows at high angles of incidence.
To further illustrate this phenomenon, a surface of R 12 is plotted vs 0 and k-- 1 in Fig. 6
for several values of (eg/A) - 1. If R12 < 10-3 , I 2 -10- 3 here and et seq.

The dependence of the reflection coefficient upon the physical parameters is rather
complicated despite the deceivingly simple appearance of Eqs. (28) and (29). There are
several interesting observations that can be made, however. First, the reflection coeffici-
ent is always unity for waves traveling horizontally and always vanishes for those traveling
vertically. The former limit occurs because a wave with horizontal phase speed consists
of vertical columns of water moving up and down alternately. The density anomaly at
the pycnocline, no matter how small, is not easily displaced by the wave. As the size of
the density anomaly 0(1/a) increases with respect to the vertical wavelength 0 (k tan 0)-l,
the dependence of the reflection coefficient is more complicated. Multiple windows occur
for which practically all of the energy passes through the layer. As increases to 900,
the vertical wavelength decreases to zero, so that more and more wavelengths are com-
pressed into the layer; hence, these windows tend to accumulate in the vicinity of 0 = 90°.
The appearance of the windows is a little surprising, but the fact that an envelope of the
reflection coefficient goes to zero as 0 approaches 900 is not. The vertical wavelength
becomes short compared to the length scale of the density anomaly, so the classical WKB
approximation becomes valid. It is well known that the WKB solution does not allow
reflection unless the wave encounters an evanescent region.

0~

-2-og RI2 -5- I

-3~ - '2.00 22.5 45.0 67.5

Fig. 6a-Log RI2 vs B and kC 1 for- -1 = 0.1

The limit of ko- - is a peculiar one in this case, and it is discussed in Appendix A.

Transitional Layer

This is the case in which e = 0 e l 0. Proceeding to evaluate the reflection
coefficient in expression (24) in this case, we see that there are two fundamentally dif-
ferent cases (see Fig. 2b);

1. el > O and c > h2 (30)
2. el > O or el < O and c < h2. (31)
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Fig. b-Log IRJ2 vsO and kal for e9 - 1 = 1.0

Fig. 6c-Log JRJ2 vs and kc-' for E^ - I = 10.

In each of these cases, the form of the reflection coefficient changes; this corresponds t<

different propagation conditions. Because of the physical significance of these, we shall
explore each one separately below.

Case . In this instance, e1 > 0 and the region of higher Brunt-Visila frequency
occupies the lower half-plane, The inequality c > h2 implies that g(A - eIa) < W2 <
g( + 1 u). Since the frequency of the transmitted wave is w, we expect that the squat
of this frequency would be less than g(A - e a) for there to be wave propagation in the
upper layer. In the inequality above, we see that these valnes of w2 are not allowed.
One would expect, therefore, that a wave incident on this thermocline at any angle from
below would be totally reflected. In fact, if c > h2, we see that

18
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a = 1 + i2

=6 1 - i52

and

y= 261 +1.

The real quantities 1 and 2 are defined by

c - h2 = 621

and

c+h 2 +627 6 >0.2' 1

Then,

Fh(- 2i2)'(61 + ib2)F(61 + 1 + i62 )
= - ) +1-i._)
1.(2 52"61^ - i 2)r(61 + 1 - a2 )

and

RI 2 = 1.

We see that
g( + Ia),

all energy indeed is reflected in the case el > 0 and that g(A - e1 a) < 2 <
as we anticipated above.

Case 2. Here, we may have el again greater than zero, but el < 0 is also allowed
and Ic < h2. From our discussion in the second section on the conditions under which
internal waves will propagate, we would expect that at least a portion of the wave energy
would be transmitted up through the transition regions. If e > 0, W2 <g(A - elCa);
and, if e1 < 0, w 2 < g(A + e1 a). Both of these conditions will allow at least partial
transmission through the anomalous region. Using the above definitions of 61 and 2,
we have

a = i2 + 1'

l= i 1 -i6 27

and
y = 1 +281.

Using these quantities in Eq. (24), we may calculate RR* with the use of the identities
(Ref. 15)

F`(ip P(- ip) = s fp snh v7ry

(32)

19
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and

Then,
sinh2 r(S1 2) (33)

Si;R I12S +=5
sih2n 1 2)

__________________ 82

r0§~~~.

05 84 . 0.5

Fig 7-Log IRj2 for the transition layer (e l < 0, e 0) as a function of
B and 2C Case 2

A graph of this expression appears in Fig 7 as a function of 5, and 62. This result is
interesting in that it is independent of the sign of the parameter C1 -that is, the reflection
mechanism does not depend upon whether the waves are going from less stable to more
stable fluid, or vice versa. Expressed in the original physical parameters however, the
value of lRi2 is dependent upon sgn(e1 ) because the angle of incidence is a function of
C) -

It is of interest to consider the special case k&1 tan 8 - 0; that is, the limit in which
the transition layer is thin compared to the vertical wavelength of the internal wave. The
parameters 61 and 62 are linear functions of kro-, so the hyperbolic functions can be re-
placed by their arguments in the limit kr-l - 0 to yield

61 62
Ri = 6 2 (34)

1 2

Although 61 and 52 remain complicated functions of the physical parameters, this is
simply a Fresnel reflection formula. It is shown in Appendix A that the reflection
coefficient for a two-layer fluid in which the layers are separated by a jump discontinuity
in N2 (z) gives the same results.

20
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CONCLUSIONS

In the second section, it was shown that the equation governing the z-dependent
part of the vertical velocity may be transformed to the hypergeometric equation. The
existence of analytic continuation formulae for this equation allows a solution represent-
ing a plane wave in the upper half-space above the pyenocline to be expressed as a linear,
complex sum of two plane waves in the region far below the pycnocline. To correspond
with the physically motivated problem of barrier transmission, we have chosen the phases
of the three waves so that the solution above the thermocline represents a wave with
group velocity away from the thermocine-the transmitted wave. The two waves below
the pycnocline are the waves incident on, and reflected by, the variation in density.

As was discussed in the third section, the reflection coefficient R is actually a com-
plex number containing information on the phase and amplitude of the reflected wave
relative to those of the incident wave. We have shown that a general thermocline form-
one which is a combination transition region and symmetric layer-possesses a reflection
coefficient expressible in terms of gamma functions having arguments which are functions
of 0, ha-1, e, and el. For a particular range of the parameter b > -1/4 (where b =
gek 2 /uCW2 ), the solution may be considerably simplified when W2 <g(A - e la), and it
is given by expression (27). This form of R 2 is a function of the parameters h, b and c
(see Eqs. (13)).

To better exhibit the behavior of IR12 as a function of the physical parameters, we
alternately equate E and then 1 to zero. The former case is that of the symmetrical
layer which may also serve as a waveguide for horizontally propagating waves, while the
latter case is that of the transition layer (see Fig. 2).

The reflection coefficient for the symmetric layer is shown in Fig. 4. It is comprised
of two graphs of R12 for the values b > -1/4 and b < -1/4. As discussed previously,
there appears to be no physical significance to the value b = -1/4. Although the form of
the solution changes in the two ranges of b, it is continuous at this value of b.

No striking behavior in R 2 is apparent in these graphs. A plot of the square of the
reflection coefficient as a function of 0 for the symmetrical layer is given in Fig. 5 for
various values of hkr1. The behavior of R 12 appears to be a rather complicated function
of ku-1. To exhibit this dependence more carefully, an isometric plot of log JR12 is given
in Fig. 6 for the parameter gealogA) - 1 equal to 0.1, 1.0 and 10.0. Values of RI2 are
arbitrarily equated to zero when they are smaller than the lowest ordinate given. The
behavior of RI2 is now quite apparent. At low values of the parameter gelG1 gA)- 1,
equal to 0.1, say, there is one hump or tunnel passing from values of large kar1 and small
o to values of large 0 and small hr-'. For small ha--1, the troughlike behavior of RI2

present in Fig. 5 is apparent in the isometric plot (Fig. 6). When the parameter equals
1.0, Fig. 5 reveals a complicated oscillatory behavior in R 2. We see here that the
44windows" discussed briefly on p. 17 start to appear and become more numerous as the
parameter becomes larger, for example, of order 10.0. As 0 approaches 90°, the windows
seem to accumulate and we conjecture that the explanation is as follows. For wave num-
bers inclined progressively more toward the vertical, the vertical wave number becomes
large, tending toward infinity as 0 - 90°. In this limiting process, many wavelengths are
able to fit into a region the order of the thermocline thickness 0(1/a). A small change in
0, therefore, can result in a significantly larger or smaller number of such contained wave-
lengths. Since the process of reflection is one of constructive or destructive interference
of these waves, the windows would then be expected to accumulate in the region 0 _ 90°.
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The plot of the transition layer reflection coefficient appears in Fig. 7 As was dis-
cussed on p. 18, when e > 0 but g(A - ela) < w2 < g(A + Ela), a wave of frequency 
incident from below cannot propagate into the upper region. All of the energy is re
flected; none is transmitted, and R 2 = 1. On the other hand, the case for which el < 0
and w2 < g(A - eia) exhibits incomplete reflection, and a plot of RJ2 as a function of
61 and 2 appears in Fig. 7. The behavior is deceivingly simple, with 1R12 being asymp-
totic to a constant for large values of SI or 2' The variables $. and 2 are somewhat
more complicated functions of 0, kor1 and el. As such, their significance is not readily
appreciated from a simple plot of the type shown in Fig. 7. Another plot of E 12 is
shown in Fig. 8 as a function of ka-1 and 0. This figure shows the reflection coefficient
as a function of 0 and kar-1 for several different values of gel c/a2: 2 10, and 50.
1R12 appears to change very little for these widely spaced values of geoaft 2 ; the only
alteration in appearance seems to be a tendency toward higher reflection coefficients for
larger 0 as ge1aoj 2 becomes large.

*0

0g 

-It-2-'log

-3-1'
0

/ G45-0 rd.5
22.5 450 67.5

Fig. 8a-Log R12 for the transition layer (e = 0) vs a and
krf 1 for 2gelhw2 = 4.0 and el > 0.

)

-2- tog lRI

0I 22.5 45.0 67.5
B

Fig. Sb-Log Ri2 for the transition layer (f = 0) vs 0 and
ha-1 for 2ge jj1 2 = 20.0 and eI > 0.
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Fig. 8e-Log IRI 2 for the transition layer (e = 0) vs V and
ku-1 for 2ge I/w2 = 100.0 and e 1 > .

Although the dependence of R 12 on physical parameters in either the symmetric or
transition cases is quite varied depending upon the values f the physical parameters, we
may draw a number of general conclusions. When the phase speed of the incident wave
is horizontal ( = 0), the group velocity is vertical (see, e.g., Phillips, Ref. 11) and the
wave motion consists of vertically oscillating columns of fluid. In this case, all of the
wave energy is reflected. On the other hand, waves for which 0 = 90°, have vertically
directed wave numbers but zero frequency. Their group velocity is therefore zero, and
we find that IR12 -O. although perhaps not monotonically because of the possible
presence of the windows. The behavior R 12 e 0 as - 90 is, in a sense, a degenerate
one because zero-frequency waves do not propagate. They reduce to a steady, horizontal
current. ince the group velocity vanishes, the question of reflection or transmission of
that energy is an inappropriate one.

Although the pycnoclines discussed in this report represent a specialized physical
situation, the advantage in their treatment is that the parametric behavior of R 12 may be
examined as certain physical parameters are changed. In Appendix B a method for treat-
ing reflection from general pycnoclines is discussed. This subject will be dealt with il
more detail in another report.
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Appendix A
REFLECTION FROM A THIN DENSITY ANOMALY

In the special case where a layered density anomaly is very thin in comparison to
the vertical wavelength of the internal wave, the reflection problem becomes much simpler
to solve. The anomalous region may be reduced, at least in the limit, to a line so that
the layer is replaced by an appropriate boundary condition.

We treat the two cases shown in Fig. Al. Case I is the limit of a symmetrical stable
layer, and Case I is the limit of a transition layer. In each case, the solutions in the
upper and lower layers are plane-propagating waves. The solutions for the vertical velocity
components in the waves are

win = exp{i[kx - nz - ct]}

w = -R exp {i[kx + n z- wt} (Al)

Wtr - T exp {i[kx - nuz - Wtl}

where win, Wre, and wfr represent the incoming, reflected, and transmitted waves. The
constants R and T are the amplitudes of the reflected and transmitted waves, and nQ and
nu are the vertical wavenumbers of the waves in the lower and upper regions, respectively.

CASE I

DENSITY I rRAC DELTA
.AJMP z FUNCTION

pZ) N(Z)

Wo / \ Wr.

CASEII

p CONTINUOUS, JUMP IN
BUT CHANGES BRUNT-VAISALA
SLOPE ABRUPTLY z FREOUENCY

\ ------ --
FgP Nz

Fig. Al-Plots of 7(z) and N(z) for Case I and II.
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The boundary conditions to be satisfied at the interface between the two layers are
that the vertical velocity and the pressure are continuous there, In terms of the vertical
velocity, these reduce to

fw] = C
gk 2

jyw j =- fJW, (A2)
hW2

where the brackets [ I represent the difference between the values on the two sides of
the interface*. In Case I, to the Boussinesq approximation, the reflection coefficient is

JRJtw22 U)l2 {A3)2p (N2W2 -a)1'2

gk AP

where pU is the average density on the two sides of the interface and Ap is the density
difference. In Case 1, the reflection coefficient is

n -n

IR = --- + n. A4)

The latter solution agrees with the reflection coefficient of Eq. (34) that is the limit
as the transition region shrinks to zero. This special case serves as a check on the results
obtained for the transition region.

On the other hand, the solution Eq. (A3) is not the same as the limiting value of
expression (28) as the symmetrical ayer shrinks to zero. This should not be surprising,
since this limit is the same as placing a delta function in a coefficient of the governing
equation,

4z k 2 --2g[tA + ea sech2 az + e tanh az] - 4 }-° (A5)

or

0Z + [ 2 i.] h2f= o, (A6)

The difference in the results is caused entirely by reversing the order in which a limit is
taken. In the continuous profile examined in the body of the report, the limit of
k-' - 0 is taken of the solution of the governing equation (AG). In this appendix, the
reflection coefficient is obtained from the solution of the equation resulting from the
limit of the governing equation (AS).

We suggest that in the limit of hC- - 0, the reflection coefficient (AS) is more
reliable than the appropriate limit of the expression

*C.S. Yih, Dynamics of Nonhomogeneous Fluids New York, Macmillan, 1965, p. 21.
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sin2Ed

sin2 rd cosh2 2h + COS2 ird sinh2 2h

This choice is a simple one. The limiting solution of Eq. (A6) has a very large number of
oscillations in the small anomalous region, so that the solution is not physically realistic.

R12 =

27
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Appendix B
A NUMERICAL METHOD FOR FINDING REFLECTION COEFFICIENTS

FOR ARBITRARY BRUNT-VA1ALA DISTRIBUTIONS

In virtually all wave reflection problems of physical interest, it is impossible to model
the pytnocline with an analytical expreadon. It is therefore of interest to devise a method
which gives accurate reflection coefficients without resorting to layer modeling

An acceptable method of solution is then as follows Given a ansmitted wave with
upward group velocity,

w exp {il*x - nz - wt))

as an initial condition, we may integrate the equation

wt+(N2 1)k2wo
4s,2

from z = - backward through the pycnocline into the region of constant Brunt-Vi-i
frequency below. The solution in the vicinity of z = + - is then a linear sum of two
waves, the incident and the reflected wave. By making use of the phase and ampltude of
the solution near z = + - with respect to those of the solution near z = - we may
calculate avalue of 1 2. To chec the accuracy of the method, a test case was tied.
The reflection coefficient for a wave with

N2 = gA + geusech 2 Z

was calculated for k-1 1, 0 = 22.50, and gee/gA - 1 = 1. The numerical integmtion
technique was found to give an answer in error of the true value (tIl12 -a187) by lO.
A thorough treatment of this method will appear in a later work.
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